
Dialog design considerations

V1.2

Session Agenda

5

4

3

2

1

Practice design by validation

Handle errors

Use a naming convention

How to end flows

Implement a modular design

Session Agenda

5

4

3

2

1

Practice design by validation

Handle errors

Use a naming convention

How to end flows

Implement a modular design

Flows are building blocks
flow 4

p
a

ra
m

s

flow 1
p

a
ra

m
s

flow 2

p
a

ra
m

s

flow 3

p
a

ra
m

s

S
k

ill

invoke

invoke

invoke

NLP

"Find my orders"

"Order a laptop"

How many flows do you need?

Intent flows

• Mapped to one or many intents

• Control flow for the task to accomplish

Services flows

• Provides reusable functionality

• Not aware of the user task

Global flows

• Flows mapping to built-in events

Don't worry about the
number of flows

Image courtesy of pixabay.com

Modular dialog flow architecture

Intent flows Service flows

Orders
create

Orders
find

Orders
cancel

Orders
return

Orders
create

Orders
find

Orders
cancel

Products
lookup

Orders
shipment

Orders
change

Orders
returns

Accounts
lookup

Account
create/delete

Intent 4

Error
handling

Sign In

Answers

Global flows

Intent 1

Intent 2

Intent 3

S
k

ill

S
k

ill

Don't think about sizing. Just keep flows small and simple

• Easy to read and understand

If a flow becomes large, review it for what part could be moved into its own service flow

Consider using composite bag entities to interact with users for a given piece of information

• A single state that could have multi-turn conversations

• Allows you to skip prompts if users provide information out-of-order

Build flows that focus on a single conversational task

• Easy for copy writers to find the right messages and prompts

• A change request by an UX designer does not impact other functionality

How to size flows

Modular development carries the risk of too many prompts and messages

• Typically, excessive display of prompts and messages only becomes apparent after the flows have
been orchestrated into a conversation

A suggestion based on our concept of intent flows and service flows

• Intent flows print contextual messages

• "I placed that order for you"

• "To cancel this order, I need you to sign-in. Are you ready?"

• Service flows print functional messages

• "I seem to be having trouble locating the order number you requested an update for. Did I understand the
order number 'ORCL1234567' correctly?"

• "I found several products that match your query. Please help me clarify by selecting one of the choices or
providing a new product name."

What type of messages to print in a flow?

Session Agenda

5

4

3

2

1

Practice design by validation

Handle errors

Use a naming convention

How to end flows

Implement a modular design

what goes up must come down

Calling a flow from another
creates a call hierarchy

Every flow eventually comes
to an end

Values may need to be passed
to calling flow upon flow return

How to end a flow

Two types of ending flows: implicit, explicit

Implicit end flows don't need to be added to a flow

• Only return control to parent

Explicit end flow are added as a component states

• May return values using output parameters

• Return an action string to the parent flow that
could be used to decide the next navigation

Explicit flows make it easier to understand what a
flow does after it has passed the last component
state

End flow states return
control to the parent flow

Parent navigation based on action string returned from a child flow

Child Flow Parent Flow

Controls transition when the flow ends.

• True: after the flow ends, the next state is executed directly.

• False: after flow ends, the skill waits for a user input before the next state executes.

Value ignored and ALWAYS set to “true” regardless of the value you define:

• Current running flow is a child flow.

• Current running flow is a root Flow, and the last state before the “end flow” captured user input.

Default value set to “Not Defined”

• Recommended not to change this value

Understanding end flow keepTurn behaviors

Session Agenda

5

4

3

2

1

Practice design by validation

Handle errors

Use a naming convention

How to end flows

Implement a modular design

Naming convention

Use a naming convention to indicate context,
meaning and a possible relationship between
artifacts (e.g., intents and flows)

Helps copy writers and conversation designers to
locate strings and conversation states

Allows developers to find the area within the flow
design that is misbehaving at runtime

Allows to filter e.g., intent names more efficiently at
design time and runtime

Having a good naming
convention is priceless

Intents

• Regular intent

• reg.orders.create, orders.reg.create, reg.profile.find, reg.profile.find.mine

• Answer intent

• ans.oci.freetier.targetAudience, oci.ans.freetier.targetAudience

Flows

• For intent flows use e.g., "intent.<name of intent>"

• intent.reg.orders.create

• For service flow use e.g., "service.<name>"

• service.orders.create

• For global flows use e.g., "global.<name>"

Example naming convention

Entities

• cbe.<name>, list.<name>, regex.<name>

• optional: metadata.list.<name>, metadata.regex.<name>, …

Entity event handler

• Use name of CBE in name

• CreateOrder_EEH, OrderSummary_EEH

Resource bundle keys

• Add location of use to key name

• <flow name>.<state name>.<key name>

• <entity name>.<prompt | errorMessage |disambiguationMessage>

• <entity name>.<bag item name>.<prompt | errorMessage |disambiguationMessage>

• eeh.<entity event handler name>.<key name>

Example naming convention

Session Agenda

5

4

3

2

1

Practice design by validation

Handle errors

Use a naming convention

How to end flows

Implement a modular design

Always implement an error handling strategy

• Print a customized message

• Log error

• Notify admins

• Initialize/Reset variables

Error handler at the flow level

Global error handler shared across all flows

Error handling

Flow specific

Error handler

Global handler

Error handler

Session Agenda

5

4

3

2

1

Practice design by validation

Handle errors

Use a naming convention

How to end flows

Implement a modular design

To err is human - Alexander Pope

See what you missed implementing in
your intents, entities and flows by using
the validate button

• Best practices built-in

Validator shows errors as well as
warnings and tips

Design by validation

