
How to call backend services

V1.1

Agenda

4

3

2

1

Entity event handler

Backend integration overview

Built-in Rest service component

Custom dialog flow components

5 Custom component deployment options

6 Best practices

Agenda

4

3

2

1

Entity event handler

Backend integration overview

Built-in Rest service component

Custom dialog flow components

5 Custom component deployment options

6 Best practices

About backend integration

Typically, digital assistants need to interact with a
backend in one way or another

• FAQ digital assistants too

Access to business or data services

Access to the Internet

• "Who is the president of the USA?"

In Oracle Digital Assistant, developer access to
backend services is through REST services

• May use OIC, OPA, or ORDS as intermediary

A digital assistant with
no backend integration
may be of no use.

- built-in template

- declarative

- returns JSON

Custom development -

TBD -

TBD -

Backend
Integration

Rest
Component

- built-in template

- declarative

- returns JSON

Custom development -

TBD -

TBD -

Backend
Integration

- built-in template

- declarative

- returns JSON

Custom development -

TBD -

Rest
Component

Backend
Integration

built-in
component
state

declarative
configuration

returns
JSON object
into variable

- built-in template

- declarative

- returns JSON

Custom development -

TBD -

TBD -

Rest
Component

Backend
Integration

built-in
component
state

declarative
configuration

returns
JSON object
into variable

When to use

REST calls from within
dialog flows

Use as preferred choice
No-code solution

Single REST call at a time

- built-in template

- declarative

- returns JSON

Custom development -

TBD -

TBD -

Rest
Component

Custom
Components

Backend
Integration

built-in
component
state

declarative
configuration

returns
JSON object
into variable

When to use

REST calls from within
dialog flows

Use as preferred choice
No-code solution

Single REST call at a time

- built-in template

- declarative

- returns JSON

Custom development -

TBD -

TBD -

Rest
Component

Custom
Components

Backend
Integration

built-in
component
state

declarative
configuration

returns
JSON object
into variable

Custom Node.js
development

Bots-node-sdk

choice of
deployment

External IDE

When to use

REST calls from within
dialog flows

Use as preferred choice
No-code solution

Single REST call at a time

When to use

REST calls from within
dialog flows

Multiple REST call within
one invocation

Post processing of REST
response

OCI integration

- built-in template

- declarative

- returns JSON

Custom development -

TBD -

TBD -

Rest
Component

Custom
Components

Backend
Integration

built-in
component
state

declarative
configuration

returns
JSON object
into variable

Custom Node.js
development

Bots-node-sdk

choice of
deployment

External IDE

When to use

REST calls from within
dialog flows

Use as preferred choice
No-code solution

Single REST call at a time

- built-in template

- declarative

- returns JSON

Custom development -

TBD -

TBD -

Rest
Component

Custom
Components

Entity Event
Handler

Backend
Integration

When to use

REST calls from within
dialog flows

Multiple REST call within
one invocation

Post processing of REST
response

OCI integration

built-in
component
state

declarative
configuration

returns
JSON object
into variable

Custom Node.js
development

Bots-node-sdk

choice of
deployment

External IDE

When to use

REST calls from within
dialog flows

Use as preferred choice
No-code solution

Single REST call at a time

- built-in template

- declarative

- returns JSON

Custom development -

TBD -

TBD -

Rest
Component

Custom
Components

Entity Event
Handler

Backend
Integration

When to use

REST calls from within
dialog flows

Multiple REST call within
one invocation

Post processing of REST
response

OCI integration

built-in
component
state

declarative
configuration

returns
JSON object
into variable

Custom Node.js
development

Bots-node-sdk

choice of
deployment

External IDE

Custom Node.js
development

External IDE or
in browser

Code responds to
component events

Choice of
deployment

When to use

REST calls from within
dialog flows

Use as preferred choice
No-code solution

Single REST call at a time

When to use

Use with composite bag
entities
• No need to exit CBE

for REST call

Use with model-driven
conversations

- built-in template

- declarative

- returns JSON

Custom development -

TBD -

TBD -

Rest
Component

Custom
Components

Entity Event
Handler

Backend
Integration

When to use

REST calls from within
dialog flows

Multiple REST call within
one invocation

Post processing of REST
response

OCI integration

When to use

REST calls from within
dialog flows

Use as preferred choice
No-code solution

Single REST call at a time

built-in
component
state

declarative
configuration

returns
JSON object
into variable

Custom Node.js
development

Bots-node-sdk

choice of
deployment

External IDE

Custom Node.js
development

External IDE or
in browser

Code responds to
component events

Choice of
deployment

- built-in template

- declarative

- returns JSON

Custom development -

TBD -

TBD -

Rest
Component

Custom
Components

Other
Entity Event

Handler

Backend
Integration

When to use

Use with composite bag
entities
• No need to exit CBE

for REST call

Use with model-driven
conversations

When to use

REST calls from within
dialog flows

Multiple REST call within
one invocation

Post processing of REST
response

OCI integration

When to use

REST calls from within
dialog flows

Use as preferred choice
No-code solution

Single REST call at a time

built-in
component
state

declarative
configuration

returns
JSON object
into variable

Custom Node.js
development

Bots-node-sdk

choice of
deployment

External IDE

Custom Node.js
development

External IDE or
in browser

Code responds to
component events

Choice of
deployment

- built-in template

- declarative

- returns JSON

Custom development -

TBD -

TBD -

Rest
Component

Custom
Components

Other
Entity Event

Handler

Backend
Integration

When to use

Use with composite bag
entities
• No need to exit CBE

for REST call

Use with model-driven
conversations

When to use

REST calls from within
dialog flows

Multiple REST call within
one invocation

Post processing of REST
response

OCI integration

When to use

REST calls from within
dialog flows

Use as preferred choice
No-code solution

Single REST call at a time

built-in
component
state

declarative
configuration

returns
JSON object
into variable

Custom Node.js
development

Bots-node-sdk

choice of
deployment

External IDE

Custom Node.js
development

External IDE or
in browser

Code responds to
component events

Choice of
deployment

SQL Dialog

Human agent

Knowledge
search

OAuth2

Intelligent Advisor

Webview

- built-in template

- declarative

- returns JSON

Custom development -

TBD -

TBD -

Rest
Component

Custom
Components

Other
Entity Event

Handler

Backend
Integration

When to use

Use with composite bag
entities
• No need to exit CBE

for REST call

Use with model-driven
conversations

When to use

REST calls from within
dialog flows

Multiple REST call within
one invocation

Post processing of REST
response

OCI integration

When to use

REST calls from within
dialog flows

Use as preferred choice
No-code solution

Single REST call at a time

built-in
component
state

declarative
configuration

returns
JSON object
into variable

Custom Node.js
development

Bots-node-sdk

choice of
deployment

External IDE

Custom Node.js
development

External IDE or
in browser

Code responds to
component events

Choice of
deployment

SQL Dialog

Human agent

Knowledge
search

OAuth2

Intelligent Advisor

When to use

Use for integration needs

Use when your requirement
fits one of these out-of-the

box solution

Webview

- built-in template

- declarative

- returns JSON

Custom development -

TBD -

TBD -

Rest
Component

Custom
Components

Entity Event
Handler

Backend
Integration

built-in
component
state

declarative
configuration

returns
JSON object
into variable

Custom Node.js
development

Bots-node-sdk

choice of
deployment

External IDE

Custom Node.js
development

External IDE or
in browser

Code responds to
component events

Choice of
deployment

Remaining agenda

Agenda

4

3

2

1

Entity event handler

Backend integration overview

Built-in Rest service component

Custom dialog flow components

5 Custom component deployment options

6 Best practices

The REST service component

Built-in REST service component that you can use
in Visual Dialog skills to send a request to a REST
service's endpoint

Ideal for simple REST calls

• If you have a complex and large response, you may
want to consider the custom component

Add the new service under Settings > API
Services

The REST service component

Configure the base endpoint, name and
description

Choose the authentication type

• When using OCI Resource Principal, make sure
the appropriate OCI policies are in place in the
respective tenancy

Add the required methods

• Select the content type

• Fill the Body with a sample request

The REST service component

Define parameters if required

• You can configure query and path parameters

Test the request to confirm all settings are correct

You can save the response as a static value

• Useful to mock the response

!Consider testing the API in Postman upfront!

Invoke the REST service

The template Call REST Service exposes the existing configured API’s

Invoke the REST service

Pick the REST Service from the list of configured
services

Choose the desired Method

Populate the request Body

• With or without an expression

Map parameters and headers

Response Mode allows to mock it with the static
response from the configuration page

When using the actual RESP API response, a
variable of type map is required to store it

Agenda

4

3

2

1

Entity event handler

Backend integration overview

Built-in Rest service component

Custom dialog flow components

5 Custom component deployment options

Dialog flow states execute logic or render a user interface

• Uses components

Component types

• Built-in

• Custom

Properties

• Pass information into a component

• Used to update variables defined in a flow

Transitions

• next – navigates to a pre-defined next state

• action – conditionally navigates to a next state

Dialog flows and components

Transitions

Properties

Component

flow state

Node.js / JavaScript

Like built-in components, just custom

• Expose properties

• May return action strings

• Used to determine navigation

• May render a user interface

About custom components

Image courtesy of pixabay.com

As simple as it gets

Open source on GitHub

• Command line to create new custom component projects

• Installed using Node Package Manager (NPM)

Contains custom component SDK

• Functions to access bot messages

• Functions to return messages to bot

• Functions to interact with user

Allows component service to be executed locally

Oracle Bots Node SDK

github.com/oracle/bots-node-sdk

Have node and npm installed (one time)

Install bots-node-sdk (one time)

• npm install -g @oracle/bots-node-sdk

Create custom component service

• Create folder and navigate into it

• npm init –y

• bots-node-sdk init

or

bots-node-sdk init --component-name

HelloWorld

Develop your custom component

• Using JavaScript or TypeScript
• … --language typescript

• Any JS IDE

When done coding, create deployable package

• bots-node-sdk pack

Optionally, you can run components locally

• bots-node-sdk service

• localhost:3000/components

Step-by-step development process

Adding custom components to a project

bots-node-sdk init component <name> custom [components/<sub_dir>]

bots-node-sdk init component QueryOrders custom components/orders

Example:

Hello World custom component example

If you look at existing custom components,
you will find a callback signature that is still
supported. It's not legacy, it's just old.

invoke(conversation, done){ … }

• Access to flow, skill, profile, user variables
• context.get|setVariable(name[,value])

• Access to bot messages
• context.postback(), context.text(), context.rawPayload()

• Keep or release control
• context.keepTurn(true|false)

• Using resource bundles
• context.translate('name of rb key')

• Print prompts and messages
• context.reply(String | message model message)

• Transition to a next state in flow
• context.transition(), context.transition(string)

• Access to component input parameter
• const {prop_name} = context.properties();

• Access to MessageModel to, optionally, render rich UI
• Context.getMessageModel()

https://oracle.github.io/bots-node-sdk/CustomComponentContext.html

Commonly used functions of the 'context' object

The Node.js ecosystem offers many similar options for interacting with REST

• https (node core), axios (npm), node-fetch (npm), … and many more

Node fetch is integrated in the bots-node-sdk and recommended for this reason

• Asynchronous REST calls supporting all REST methods

• https://www.npmjs.com/package/node-fetch

REST service calls in custom components

const fetch = require("node-fetch")
…

let reqUrl = converterBaseUrl+"?q="+baseCurrency+"_"+targetCurrency+"&compact=ultra&apiKey="+converterApiKey;

…
const restCall = await fetch(reqUrl,{ method: 'GET'});
const response = await _ restCall.json();

const conversionRate = response[baseCurrency+"_"+targetCurrency];
const result = Math.round(((conversionRate * amount) + Number.EPSILON) * 100) / 100;
…

Example: Currency Conversion

Adding custom components to the dialog flow

Agenda

4

3

2

1

Entity event handler

Backend integration overview

Built-in Rest service component

Custom dialog flow components

5 Custom component deployment options

6 Best practices

Event-driven approach to interact with custom
components

Composite bag entity (CBE)

• Real world object

• Model-driven conversation

Entity event handler (EEH)

• (optional) registered with a CBE

• Events handled by functions in EEH

• Function written in JavaScript (Node.js)

• Allow developers to interact with CBE

Entity event handler

CBE reference

CBE State bag item 1

bag item 2

bag item 3

bag item 4

CBE

E
v

e
n

t
H

a
n

d
le

r

Entity Level

• init

• validate

• publishMessage

• maxPromptsReached

• resolved

• attachmentReceived

• locationReceived

Item Level

• shouldPrompt

• publishPromptMessage

• validate

• publishDisambiguateMessage

• maxPromptsReached

Custom

• postback event with custom
payload

EEH Events

CRUD REST (backend) integration

Custom validation

• E.g., a valid date is not automatically a valid date

• E.g., cross bag-item validation

• E.g., validation based on backend queries

Customize prompts and messages

• E.g., use card layout instead of lists

• Add common buttons (e.g., "cancel button")

• Change content of a message (e.g., add slotted, queried or derived values)

Slot bag item values

Determine next navigation target

Entity event handler use cases

• Access to flow, skill, profile, user variables
• context.get|setVariable(name[,value])

• Access to bag item values
• context.get|setItemValue(name[,value])

• Use of resource bundles
• context.translate('name of rb key')

• Printing prompts and messages
• context.addMessage(string | message model, true | false)

• context.getCandidateMessages(),

context.addCandidateMessages()

• Transition to a next state in flow
• Context.setTransitionAction(string)

• Using custom properties
• context.set|getCustomProperty(name[,value])

• Access to MessageModel to, optionally, render rich UI
• Context.getMessageModel()

https://oracle.github.io/bots-node-sdk/EntityResolutionContext.html

Commonly used functions of the 'context' object

How it works: bag item prompt
C

o
m

p
o

si
te

 B
a

g
 E

n
ti

ty
 T

e
m

p
la

te
 S

ta
te

Entity value are slotted if nlpresultVar configured

Should user be prompted?

Show original or modified message (prompt)

Composite Bag
Entity

Entity Event
Handler

Bag items

registered
Reads CBE configuration

If user should be prompted and if EEH should prompt function is registered, send event

If EEH prompt message function is registered, send event with candidate message

Evaluate if prompt should be displayed

Creates candidate message (prompt)

How it works: bag item validation

Composite Bag
Entity

Entity Event
Handler

Bag items

C
o

m
p

o
si

te
 B

a
g

 E
n

ti
ty

 T
e

m
p

la
te

 S
ta

te

registered

Displays prompt

Validate bag item

User input

Perform custom validation

If entity validation passes and EEH validate function registered, send event

Update CBE variable if validation succeeded and
no further disambiguation is needed

Easy to use

Context dialog shows event functions that can be
added for bag item or entity

Uses embedded container for deployment

Code is saved using "save" button

Source controlled via skill versioning

Advanced option

Uses bots-node-sdk to create the EEH project

• Creates EEH components

Component needs to be packaged, deployed and
registered with composite bag entity

Local code project can be source controlled

Easier to import and manage dependencies

Development choices

Browser development External JavaScript IDE

Browser development

Have node and npm installed (one time)

Install bots-node-sdk (one time)

• npm install -g @oracle/bots-node-sdk

Create EEH custom component service

• Create folder and navigate into it

• npm init –y

• bots-node-sdk init --component-type

entityEventHandler

Develop your custom component

• Using JavaScript or TypeScript
• … --language typescript

• Any JS IDE

When done coding, create deployable package

• bots-node-sdk pack

Optionally, you can run components locally

• bots-node-sdk service

External IDE: Using bots-node-sdk to create an EEH project

External IDE: Adding EEH custom components to a project

bots-node-sdk init component <name> entityEventHandler [components/<sub_dir>]

bots-node-sdk init component OrderEEH entityEventHandler [components/<sub_dir>]

Example:

Add the following code on top of your custom
component (CCS or EEH)

// eslint-disable-next-line no-unused-vars

const { EntityResolutionContext } = require("@oracle/bots-node-sdk/lib");

Add the following comment on to each function

/**

* @param event

* @param {EntityResolutionContext} context

*/

validate: async (event, context) => {

Code completion support in MS Visual Studio Code

Use Node fetch module

• recommended

REST calls are same as with custom
components

• Asynchronous calls

• No need to leave CBE

Rest Service calls in EEH

CBE reference

CBE State bag item 1

bag item 2

bag item 3

bag item 4

CBE

E
v

e
n

t
H

a
n

d
le

r

REST
Service

Agenda

4

3

2

1

Entity event handler

Backend integration overview

Built-in Rest service component

Custom dialog flow components

5 Custom component deployment options

6 Best practices

Built-in Container

• Embedded in skill

• Oracle functions deployed
on Oracle tenancy

• Drag & drop deployment

• Ease of administration

External Oracle functions

• Customer tenant

• Full control

• Access to OCI services

External Container

• Customer tenant

• Full control

• Access to OCI service

• No limits

• webviews and webhooks

Deployment options & benefits

Built-in Container

• Embedded in skill

• Oracle functions deployed
on Oracle tenancy

• Drag & drop deployment

• Ease of administration

• No administrative access

• Oracle function limits

External Oracle functions

• Customer tenant

• Full control

• Access to OCI services

• Additional OCI costs

• Oracle function limits

External Container

• Customer tenant

• Full control

• Access to OCI service

• No limits

• Can host webviews

• Additional OCI costs

Deployment options & things to consider

Custom component registration

Agenda

4

3

2

1

Entity event handler

Backend integration overview

Built-in Rest service component

Custom dialog flow components

5 Custom component deployment options

6 Best practices

Question 1

Custom components if you need backend
integration from the dialog flow

Event handlers when that access is required from
within the resolution of a composite bag

Custom components
or entity event
handlers,

what is best for
backend integration?

Question 2

If you need to make several API calls, or to have a
more complex response post-processing, then use
custom components

REST service is ideal for single and simple API calls

Custom or built-in
REST service
component,

what is best for
backend integration?

Question 3

If you need to access OCI services from your
custom component, then consider deploying it in
your own tenancy (OCI Function, Kubernetes or
external node server)

If you have requirements to avoid the “cold start”*
from the embedded deployment, then a
deployment in a Kubernetes cluster or an external
node server is a good option

*Embedded deployments use internal OCI
Functions which are serverless, hence they have a
startup time the first time they are called

If custom, where
should I deploy to?

